粉體行業在線展覽
面議
304
FluorPen FP110手持式葉綠素熒光儀用于實驗室、溫室和野外快速測量植物葉綠素熒光參數,具有便攜性強、精確度高、性價比高等特點;雙鍵操作,具圖形顯示屏,內置鋰電和數據存儲,廣泛應用于研究植物的光合作用、脅迫監測、除草劑檢測或突變體篩選,還可用于生態毒理的生物檢測,如通過不同植物對土壤或水質污染的葉綠素熒光響應,找出敏感植物作為生物傳感器用于生物檢測。FP110配備多種葉夾型號,用于不同的樣品與研究。
應用領域
適用于光合作用研究和教學,植物及分子生物學研究,農業、林業,生物技術領域等。研究內容涉及光合活性、脅迫響應、農藥藥效測試、突變篩選等。
· 植物光合特性研究
· 光合突變體篩選與表型研究
· 生物和非生物脅迫的檢測
· 植物抗脅迫能力或者易感性研究
· 農業和林業育種、病害檢測、長勢與產量評估
· 除草劑檢測
· 教學
功能特點:
§ 結構緊湊、便攜性強,LED光源、檢測器、控制單元集成于僅手機大小的儀器內,重量僅188g
§ 功能強大,是葉綠素熒光技術的高端結晶產品,具備了大型熒光儀的所有功能,可以測量所有葉綠素熒光參數
§ 內置了所有通用葉綠素熒光分析實驗程序,包括3套熒光淬滅分析程序、3套光響應曲線程序、OJIP快速熒光動力學曲線等
§ 高時間分辨率,可達10萬次每秒,自動繪出OJIP曲線并給出26個OJIP–test參數
§ FluorPen專業軟件功能強大,可下載、展示葉綠素熒光參數圖表,也可以通過軟件直接控制儀器進行測量
§ 具備無人值守自動監測功能
§ 內置藍牙與USB雙通訊模塊,GPS模塊,輸出帶時間戳和地理位置的葉綠素熒光參數圖表
§ 配備多種葉夾型號:固定葉夾式(適于實驗室內暗適應或夜間快速測量)、分離葉夾式(適用于野外暗適應測量)、探頭式(透明光纖探頭,具備葉片固定裝置,用于非接觸性測量監測或光適應條件下的葉綠素熒光監測)、用戶定制式等
§ 可選配野外自動監測式熒光儀,防水防塵設計
測量程序與功能
· Ft:瞬時葉綠素熒光,暗適應完成后Ft=F0
· QY:量子產額,表示光系統II 的效率,等于Fv/Fm(暗適應狀態)或ΦPSII (光適應狀態)。
· OJIP:快速熒光動力學曲線,用于研究植物暗適應后的快速熒光動態變化
· NPQ:熒光淬滅動力學曲線,用于研究植物從暗適應到光適應狀態的熒光淬滅變化過程。
· LC:光響應曲線,用于研究植物對不同光強的熒光淬滅反應。
· PAR:光合有效輻射,測量環境中植物生長可以利用的400-700nm實際光強(限PAR型號)。
技術參數
· 測量參數包括F0、Ft、Fm、Fm’、QY、QY_Ln、QY_Dn、NPQ、Qp、Rfd、PAR(限PAR型號)、Area、Mo、Sm、PI、ABS/RC等50多個葉綠素熒光參數,及3種給光程序的光響應曲線、3種熒光淬滅曲線、OJIP曲線等
· OJIP–test時間分辨率為10μs(每秒10萬次),給出OJIP曲線和26個參數,包括F0、Fj、Fi、Fm、Fv、Vj、Vi、Fm/F0、Fv/F0、Fv/Fm、Mo、Area、Fix Area、Sm、Ss、N、Phi_Po、Psi_o、Phi_Eo、Phi–Do、Phi_Pav、PI_Abs、ABS/RC、TRo/RC、ETo/RC、DIo/RC等
· 測量程序:Ft、QY、OJIP、NPQ1、NPQ2、NPQ3、LC1、LC2、LC3、PAR(限PAR型號)、Multi無人值守自動監測
· 葉夾類型:FP110/S固定葉夾式、FP110/D分離葉夾式、FP110/P探頭式、FP110/X用戶定制式
· PAR傳感器(限PAR型號):80o入射角余弦校正,讀數單位μmol(photons)/m2.s,可顯示讀數,檢測范圍400-700 nm
· 測量光:每測量脈沖**0.09μmol(photons)/m2.s,10-100%可調
· 光化學光:10-1000μmol(photons)/m2.s可調
· 飽和光:**3000μmol(photons)/m2.s,10-100%可調
· 光源:標準配置藍光470nm,可根據需求配備不同波長的LED光源
· 檢測器:PIN光電二極管,667–750nm濾波器
· 尺寸大小:超便攜,手機大小,134×65×33mm,重量僅188g
· 存貯:容量16Mb,可存儲149000數據點
· 顯示與操作:圖形化顯示,雙鍵操作,待機8分鐘自動關閉
· 供電:可充電鋰電池,USB充電,連續工作48小時,低電報警
· 工作條件:0–55℃,0–95%相對濕度(無凝結水)
· 存貯條件:-10–60℃,0–95%相對濕度(無凝結水)
· 通訊方式:藍牙+USB雙通訊模式
· GPS模塊:內置
· 軟件:FluorPen1.1專用軟件,用于數據下載、分析和圖表顯示,輸出Excel數據文件及熒光動力學曲線圖,適用于Windows 7及更高操作系統
操作軟件與實驗結果
產地:捷克
應用案例:
2017年4月,美國國家航空航天局(NASA)新一代先進植物培養器(Advanced Plant Habitat,APH)搭載聯盟號MS-04貨運飛船抵達國際空間站。宇航員使用FluorPen手持儀葉綠素熒光儀在其中開展植物生理學及太空食物種植(growth of fresh food in space)的研究。
參考文獻
1. F Dang, et al. 2019. Discerning the Sources of Silver Nanoparticle in a Terrestrial Food Chain by Stable Isotope Tracer Technique. Environmental Science & Technology 53(7): 3802-3810
2. N Moghimi, et al. 2019. New candidate loci and marker genes on chromosome 7 for improved chilling tolerance in sorghum. Journal of Experimental Botany70(12): 3357–3371
3. M Rafique, et al. 2019. Potential impact of biochar types and microbial inoculants on growth of onion plant in differently textured and phosphorus limited soils. Journal of Environmental Management247: 672-680
4. P Soudek, et al. 2019. Thorium as an environment stressor for growth of Nicotiana glutinosa plants. Environmental and Experimental Botany164: 84-100
5. JA Pérez-Romero, et al. 2019. Investigating the physiological mechanisms underlying Salicornia ramosissima response to atmospheric CO2 enrichment under coexistence of prolonged soil flooding and saline excess. Plant Physiology and Biochemistry135: 149-159
6. D Shao, et al. 2019. Physiological and biochemical responses of the salt-marsh plant Spartina alterniflora to long-term wave exposure. Annals of Botany, DOI: 10.1093/aob/mcz067
7. C Cirillo, et al. 2019. Biochemical, Physiological and Anatomical Mechanisms of Adaptation of Callistemon citrinus and Viburnum lucidum to NaCl and CaCl2 Salinization. Front. Plant Sci. 10:742
8. T Savchenko, et al. 2019. Waterlogging tolerance rendered by oxylipin-mediated metabolic reprogramming in Arabidopsis. Journal of Experimental Botany70(10): 2919–2932
9. M Liu, et al. 2019. Strong turbulence benefits toxic and colonial cyanobacteria in water: A potential way of climate change impact on the expansion of Harmful Algal Blooms. Science of The Total Environment670: 613-622
10. PK Tiwari, et al. 2019. Liquid assisted pulsed laser ablation synthesized copper oxide nanoparticles (CuO-NPs) and their differential impact on rice seedlings. Ecotoxicology and Environmental Safety176: 321-329
11. JA Pérez-Romero, et al. 2018. Atmospheric CO2 enrichment effect on the Cu-tolerance of the C4 cordgrass Spartina densiflora. Journal of Plant Physiology220: 155-166
12. SK Yadav, et al. 2018. Physiological and Biochemical Basis of Extended and Sudden Heat Stress Tolerance in Maize. Proceedings of the National Academy of Sciences 88(1): 249-263
13. D Balfagón, et al. 2018. Involvement of ascorbate peroxidase and heat shock proteins on citrus tolerance to combined conditions of drought and high temperatures. Plant Physiology and Biochemistry127: 194-199
14. JI Vílchez, et al. 2018. Protection of Pepper Plants from Drought by Microbacterium sp. 3J1 by Modulation of the Plant's Glutamine and α-ketoglutarate Content: A Comparative Metabolomics Approach. Front. Microbiol. 9:284
15. MC Sorrentino, et al. 2018. Performance of three cardoon cultivars in an industrial heavy metal-contaminated soil: Effects on morphology, cytology and photosynthesis. Journal of Hazardous Materials351: 131-137
16. E Niewiadomska, et al. 2018. Lack of tocopherols influences the PSII antenna and the functioning of photosystems under low light. Journal of Plant Physiology223: 57-64
17. S Singh, et al. 2018. Cadmium toxicity and its amelioration by kinetin in tomato seedlings vis-à-vis ascorbate-glutathione cycle. Journal of Photochemistry and Photobiology B: Biology178: 76-84
18. EL Fry, et al. 2018. Drought neutralises plant–soil feedback of two mesic grassland forbs. Oecologia186(4): 1113–-125
附:OJIP參數及計算公式
Bckg = background
Fo: = F50μs; fluorescence intensity at 50 μs
Fj: = fluorescence intensity at j-step (at 2 ms)
Fi: = fluorescence intensity at i-step (at 60 ms)
Fm: = maximal fluorescence intensity
Fv: = Fm - Fo (maximal variable fluorescence)
Vj = (Fj - Fo) / (Fm - Fo)
Fm / Fo = Fm / Fo
Fv / Fo = Fv / Fo
Fv / Fm = Fv / Fm
Mo = TRo / RC - ETo / RC
Area = area between fluorescence curve and Fm
Sm = area / Fm - Fo (multiple turn-over)
Ss = the smallest Sm turn-over (single turn-over)
N = Sm . Mo . (I / Vj) turn-over number QA
Phi_Po = (I - Fo) / Fm (or Fv / Fm)
Phi_o = I - Vj
Phi_Eo = (I - Fo / Fm) . Phi_o
Phi_Do = 1 - Phi_Po - (Fo / Fm)
Phi_Pav = Phi_Po - (Sm / tFM); tFM = time to reach Fm (in ms)
ABS / RC = Mo . (I / Vj) . (I / Phi_Po)
TRo / RC = Mo . (I / Vj)
ETo / RC = Mo . (I / Vj) . Phi_o)
DIo / RC = (ABS / RC) - (TRo / RC)