粉體行業在線展覽
面議
537
荷蘭Lumicks C-Trap
超分辨單分子動力分析儀(熒光光鑷)--C-Trap,是世界上首款將光鑷、共聚焦或 STED 超分辨顯微鏡和微流控系統結合的單分子操控儀器。C-Trap通過高度聚焦激光束產生的力來操作納米/微米顆粒,實現了對生物分子的單分子操縱,并且結合力學檢測系統和共聚焦或 STED 超分辨顯微鏡,可以定位反應的結合位點,并實時監測生物分子的單分子動力學特性。C-Trap可以揭示大量分子相互作用的機制,包括:DNA的修復、DNA的復制和轉錄、核糖體的翻譯、生物分子馬達和酶、細胞膜的相互作用、DNA-DNA的相互作用、DNA發夾結構動力學、DNA/RNA的結構動力學蛋白質的折疊(去折疊)、DNA的組織化和染色質化、細胞的運動機制等信息。
Lumicks 超分辨單分子動力分析儀技術特征:
√ 多重連續激光光阱捕獲 √ ****的剛性范圍 √ 較低的力學噪聲 √ **的3D捕獲定位 | √ 超穩定負壓驅動微流體 √ 自動控制的微流控芯片 √ 高度相關的力學-熒光數據采集 | √ 多重共聚焦掃描熒光顯微鏡 √ 單光子靈敏度 √ 可升級到STED超分辨率 |
技術原理:
Lumicks超分辨單分子動力分析儀主要由微液流控制系統、光鑷操縱系統、力學檢測系統以及共聚焦(超分辨率顯微鏡)成像系統組成。微液流控制系統采用分通道集成設計,避免反應體系交叉污染,確保多步驟生物反應原位進行;光鑷系統通過高度聚焦激光束產生的力來操作納米或微米級的介電質顆粒,實現了對生物分子的單分子水平的操縱;結合力學檢測系統和共聚焦(超分辨率顯微鏡)成像系統,同時從力學和光學角度,高精度定位反應的結合位點,實時監測生物分子的單分子動力學特性。
應用領域:
應用包括:利用 CTFM(Correlative Tweezers – Fluorescence Microscopy)揭示大量分子相互作用機制的詳細信息,主要包括:
DNA的修復 | 中間纖維 | 核糖體的翻譯 | 細胞的運動機制 |
DNA的復制和轉錄 | 生物分子馬達和酶 | 細胞膜的相互作用 | DNA-DNA的相互作用 |
DNA發夾結構動力學 | DNA/RNA的結構動力學 | 蛋白質的折疊(去折疊) | DNA的組織化和染色質化 |
DNA-蛋白互作可視化 | 蛋白折疊/去折疊 |
小分子、酶活性的研究 | 細胞骨架、分子馬達動力學的研究 |
點擊圖片查看應用案例詳情:
DNA修復機制和非同源末端連接(NHEJ)單分子可視化 | 使用光鑷在單分子水平檢測蛋白折疊、去折疊和構象動力學 |
光鑷結合STED超分辨技術揭示DNA與蛋白相互作用 | 機械力作用下DNA結構變化的實時可視化 |
C-Trap規格參數:
■ 光鑷: 檢測范圍:50μ m×50μ m×35μ m(x,y,z) 獨立光阱數目:1-4 光阱類型:持續的激光提供穩定精確的高強度捕獲 力學檢測分辨率: <0.1pN @100Hz, 2μ m 聚苯乙烯微球(由生物樣品決定) **逃逸力:1000pN , 4.5μm 聚苯乙烯微球 應力穩定性:<1pN 光阱轉角頻率:0.1kHz-15kHz 光阱距離分辨率:<0.3nm @100Hz 小步移: <0.5nm 光阱移動特性:所有光阱可在 x,y 平面獨立移動;1+2,3+4 可在三維空間成對移動 運動微球追蹤精確度:<3nm @ 100Hz 視頻分析 | ■ 共聚焦顯微鏡: 可視范圍:50μm×35μm(x,y) 共聚焦顏色*:多可三色共用,從 488nm 到 647nm 之間的十種波長中選擇 共聚焦分辨率: 衍射極限之內 STED 分辨率*:<35nm 掃描速度:線性掃描速度 200Hz 定位精度:<15nm 光斑定位精確度:<1nm 背景抑制極限:100nM @1ms 積分時間 敏感度:極低的亮度檢測極限以及單光子計數??蓹z測單個 eGFP 其他值得注意的特點:和光鑷**的結合,交互式體驗 | |
■ u-Flux 微流控: 微流控流動系統:負壓系統可以在層流環境下檢測到亞納米級別的位移 用于遠程操控的自動閥 無位移偏差 單分子測量零干擾 多達11個注射器可以接到流動池上來實現復雜的多重蛋白分析 | ■ 軟件: C-Trap便捷直觀的雙屏顯示界面給您的實驗操作帶來極大便利;您可通過手動點擊操縱桿或通過簡單的命令來自動控制諸如光阱位置,平臺位置,微流體以及數據記錄等過程。以用戶為中心的軟件操作界面以及簡易的操作流程使復雜的單分子實驗過程(微球捕獲,分子的連接,隨后的操縱以及成像整個過程)在數分鐘之內即可完成。 |
發表的文獻列表:
1. Naqvi M M, Avellaneda M J, Roth A, et al. Polypeptide collapse modulation and folding stimulation by GroEL-ES. bioRxiv, 2020
2. Ghosh A, Zhou H X. Fusion Speed of Biomolecular Condensates. bioRxiv, 2020
3. Alshareedah I, Moosa M M, Raju M, et al. Phase Transition of RNA-protein Complexes into Ordered Hollow Condensates. bioRxiv, 2020
4. Meijering A E C, Biebricher A S, Sitters G, et al. Imaging unlabeled proteins on DNA with super-resolution. Nucleic acids research, 2020
5. Wruck F, Tian P, Kudva R, et al. The ribosome modulates folding inside the ribosomal exit tunnel. BioRxiv, 2020
6. Kraxner J, Lorenz C, Menzel J, et al. Post-Translational Modifications Soften Intermediate Filaments. bioRxiv, 2020
7. Avellaneda M J, Koers E J, Minde D P, et al. Simultaneous sensing and imaging of individual biomolecular complexes enabled by modular DNA–protein coupling. Communications Chemistry, 2020
8. Spakman D, King G A, Peterman E J G, et al. Constructing arrays of nucleosome positioning sequences using Gibson Assembly for single-molecule studies. Scientific reports, 2020
9. Schaedel L, Lorenz C, Schepers A V, et al. Vimentin Intermediate Filaments Stabilize Dynamic Microtubules by Direct Interactions. bioRxiv, 2020
10. Avellaneda M J, Franke K B, Sunderlikova V, et al. Processive extrusion of polypeptide loops by a Hsp100 disaggregase. Nature, 2020
11. Hill C H, Napthine S, Pekarek L, et al. Structural studies of Cardiovirus 2A protein reveal the molecular basis for RNA recognition and translational control. bioRxiv, 2020
12. Qin Z, Bi L, Hou X M, et al. Human RPA activates BLM’s bidirectional DNA unwinding from a nick. Elife, 2020
13. Rill N, Mukhortava A, Lorenz S, et al. Alkyltransferase-like protein clusters scan DNA rapidly over long distances and recruit NER to alkyl-DNA lesions. Proceedings of the National Academy of Sciences, 2020
14. Mei L, de los Reyes S E, Reynolds M J, et al. Molecular mechanism for direct actin force-sensing by α-catenin. bioRxiv, 2020
15. Kucera O, Janda D, Siahaan V, et al. Anillin propels myosin-independent constriction of actin rings. bioRxiv, 2020
16. Schepers A V, Lorenz C, K?ster S. Tuning intermediate filament mechanics by variation of pH and ion charges. Nanoscale, 2020
17. Khawaja A, Itoh Y, Remes C, et al. Distinct pre-initiation steps in human mitochondrial translation. Nature Communications, 2020
18. Sorkin R, Marchetti M, Logtenberg E, et al. Synaptotagmin-1 and Doc2b Exhibit Distinct Membrane-Remodeling Mechanisms. Biophysical journal, 2020
19. Van Rosmalen M G M, Kamsma D, Biebricher A S, et al. Revealing in real-time a multistep assembly mechanism for SV40 virus-like particles. Science Advances, 2020
20. Kretzer B, Kiss B, Tordai H, et al. Single-Molecule Mechanics in Ligand Concentration Gradient. Micromachines, 2020
21. Raja A, Hadizadeh N, Candelli A. Optical tweezers and multimodality imaging: a platform for dynamic single‐molecule analysis. The FASEB Journal, 2020
22. Zananiri R, Malik O, Rudnizky S, et al. Synergy between RecBCD subunits is essential for efficient DNA unwinding. Elife, 2019
23. Leicher R, Eva J G, Lin X, et al. PRC2 bridges non-adjacent nucleosomes to establish heterochromatin. bioRxiv, 2019
24. Tafoya S, Large S J, Liu S, et al. Using a system’s equilibrium behavior to reduce its energy dissipation in nonequilibrium processes. Proceedings of the National Academy of Sciences, 2019
25. King G A, Burla F, Peterman E J G, et al. Supercoiling DNA optically. Proceedings of the National Academy of Sciences, 2019
26. Lorenz C, Forsting J, Schepers A V, et al. Lateral subunit coupling determines intermediate filament mechanics. Physical review letters, 2019
27. Kaur T, Alshareedah I, Wang W, et al. Molecular crowding tunes material states of ribonucleoprotein condensates. Biomolecules, 2019
28. Wasserman et al., Replication Fork Activation Is Enabled by a Single-Stranded DNA Gate in CMG Helicase. Cell, 2019
29. Orsenski et al., Sites of high local frustration in DNA origami. Nature Communication, 2019
30. Newton et al., DNA stretching induces Cas9 off-target activity. Nature Structural Molecular Biology, 2019
31. Nanoletters, Real-Time Assembly of Viruslike Nucleocapsids Elucidated at the Single-Particle Level. Marchetti et al., 2019
32. Zheng et al., Reversible histone glycation is associated with disease-related changes in chromatin architecture. Nature Communication, 2019
33. Gui et al., Structural basis for reversible amyloids of hnRNPA1 elucidates their role in stress granule assembly. Nature Communication, 2019
34. Alshareedah et al., Interplay between Short-Range Attraction and Long-Range Repulsion Controls Reentrant Liquid Condensation of Ribonucleoprotein–RNA Complexes. JACS, 2019
35. Forsting et al., Vimentin intermediate filaments undergo irreversible conformational changes during cyclic loading. Nanoletters, 2019
36. Gutierrez-Escribano et al., A conserved ATP- and Scc2/4-dependent activity for cohesin in tethering DNA molecules. Science Advances, 2019
37. Sarah Koster (University of Gottingen), Viscoelastic properties of vimentin originate from nonequilibrium conformational changes. Science Advances, 2018
38. Anthony Hyman (MPI-CBG), Salt-Dependent Rheology and Surface Tension of Protein Condensates Using Optical Traps. Physical Review Letters, 2018
39. Sarah Koster (University of Gottingen), Nonlinear Loading-Rate-Dependent Force Response of Individual Vimentin Intermediate Filaments to Applied Strain. Physical Review Letters, 2017
40. Ineke Brouwer,Sliding sleeves of XRCC4–XLF bridge DNA and connect fragments of broken DNA and connect fragments of broken DNA.Nature, 2016
41. Douwe Kamsma, Tuning the Music: Acoustic Force Spectroscopy (AFS) 2.0. Methods, 2016
42. Nicholas A, Fibrin Networks Support Recurring Mechanical Loads by Adapting their Structure across Multiple Scales. Biophysical Journal,2016
43. Gerrit Sitters, Acoustic force spectroscopy. Nature methods, 2015
44. Andrea Candelli, Visualization and quantification of nascent RAD51 filament formation at single-monomer resolution. PNAS, 2014
45. Iddo Heller, STED nanoscopy combined with optical tweezers reveals protein dynamics on densely covered DNA. Nature methods, 2014
各大用戶遍布全球